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Abstract

Knowing where the driver of a car is looking, whether in a mirror or through
the windshield, is important for advanced driver assistance systems and driving
education applications. This problem can be addressed as a supervised classification
task. However, in a typical dataset of driver video recordings, some classes will
dominate over others. We implemented a driving video annotation tool (DVAT) that
uses automatically recognized driving situations to focus the human annotator’s
effort on snippets with a high likelihood of otherwise rarely occurring classes. By
using DVAT, we reduced the number of frames that need human input by 87%
while keeping the dataset more balanced and using human time efficiently.

1 Introduction

Acquiring annotated data of high quality that is representative of a specific domain is a critical
part when developing supervised machine learning systems. Insufficient data can bottleneck the
performance by a huge margin (Shao et al. [2019]). However, collecting and annotating data of high
quality is both time-consuming and expensive, especially when this has to be done manually. One of
the most common machine learning tasks is classification, which involves attributing a class label
from a finite set of labels to new inputs. The workload and costs of data collection for classification
problems increase further in situations where some of the classes are rare relative to the others
(imbalanced distribution). In this case, very large amounts of data may need to be processed to get
enough representative samples for each of the rare classes.

This is the exact problem we faced when developing a machine learning system that can classify
which mirror or blind zone the driver of a car is looking at based on images of the driver’s face.
Similar to Ribeiro and Costa [2019], we call these target areas of the driver’s attention gaze zones.
Side mirrors, rear-view mirror, windshield, and left and right blind zones constitute the gaze zone
classes in our classification problem. Observing the traffic environment, especially other road users,
is an essential part of driving a car on public roads. However, the driver mostly looks out the front
window of the car and will only look in the different mirrors from time to time, as what goes on in
front of the car is in most situations considered the most important part of the environment for the
driver. As the task of classifying where the driver is looking can easily be formulated as a supervised
learning problem, labeled data is required. The data must be collected and annotated. The unlabeled
source data consists of video recordings of the driver’s face when driving a full-scale car simulator
situated in a virtual environment.

The objective of the research presented here is to collect a balanced dataset for training supervised
image classification algorithms while minimizing the time spent on searching for the sparse classes.
The time of a human annotator should be spent on labeling a subset of the source data that is more
balanced in regards to the classes than the source dataset. To speed up the annotation process, we use
context information about the driving situation collected from the driving simulator. Our hypothesis is
that the rare classes are most likely to appear during the situations where the parts of the environment
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that are not in front of the car become important, such as when turning in an intersection or changing
lanes. Automating the identification of these situations is relatively easy when driving a simulator
in a virtual environment. The contributions of the research presented here include: 1) a description
of the problem of annotating an imbalanced gaze dataset using driving context, 2) a description of
the Driving Video Annotation Tool (DVAT) we developed for speeding up the annotation process
of a highly imbalanced dataset, 3) a description of the integration of the annotation workflow in a
data-centric model development process, and 4) an analysis of the efficiency gains from using DVAT.

2 Problem Description

Advanced driver assistance systems [Paul et al., 2016], educational car systems [Sharon et al., 2005],
and virtual driving instructors [Weevers et al., 2003] require assessing the current situation and give
feedback to the driver. A system that is capable of monitoring where the driver’s gaze is directed
can greatly improve the accuracy of the situation assessment and the relevance of the feedback.
Eye-tracking systems (e.g. Selim et al. [2020]) and direct classification of the driver’s face images
(e.g. Rangesh et al. [2020]) are popular approaches to solve this issue. However, both validation and
training of such systems require a dataset that includes ground truth annotations of the gaze zone
classes. Obtaining such a dataset is time-consuming, and is most often performed semi-automatically,
for example, by recording human participants with a camera and asking them to look at predefined
gaze zones (Ortega et al. [2020], Ribeiro and Costa [2019]). The participants might be sitting in
a car, but the car is usually standing still for safety reasons. The annotations in this approach are
created automatically without requiring any additional manual work, but the scenario of sitting
in a still car and being asked to focus on certain gaze zones does not approach realistic driving
scenarios. The duration of the driver’s attention to each zone, the rotation of the head and eyes can
change significantly while driving in a realistic situation such as during an overtake. From our visual
inspections, we see that head and eye movements are usually much faster, leading in some cases to
motion blur (e.g. if side mirror and blind spot observation are performed within a continuous head
movement), and there are bigger variations and larger extremes in head poses and positions of the
pupils.

These drawbacks motivated us to create a dataset from real driving sessions of drivers in a virtual
world using a car simulator. To our knowledge, to date, there is no work published on creating a
gaze zone dataset using real driving sessions. In this work, participants are recorded while using a
high-fidelity driving simulator (Allen et al. [2007]). In realistic situations, drivers tend to look into
the mirrors for a short time (by our measurements mainly in the range of 200ms - 500ms) and mostly
during specific maneuvers. This makes it very tedious to manually locate all relevant frames where
the driver’s attention is on the right gaze zone. Another issue with this approach is that in a realistic
scenario, the driver mostly looks straight ahead through the windshield, and thus the data becomes
imbalanced.

Formally, supervised learning of a set of image classes can be formulated as follows: Given a
training set of N example pairs (x1, yx1

), (x2, yx2
), ..., (xN , yxN

) where xi ∈ X are images that
belong to a finite set of classes yj ∈ Y , for a new input x ∈ X assign y ∈ Y . In our case, X
is a set of images of the upper body of drivers captured by a fixed driver-facing camera mounted
inside a car simulator. An example image is shown in Figure 2 (5). The set of classes Y contains
the gaze zones {windshield, rearMirror, leftMirror, rightMirror, leftBlindspot, rightBlindspot}
indicating when the driver looks through the windshield, in the rear-view mirror, left-side mirror,
right-side mirror, left blind-zone or right blind-zone.

In a perfectly balanced dataset Q, each of the M classes of Y is equally probable: P (y1|Q) ≈
P (y2|Q) ≈ ... ≈ P (yi|Q). However, our problem is that the source data W is highly unbal-
anced in favor of the gaze zone windshield: P (windshield |W) � P (rear |W) ≈ P (left |W) ≈
P (right |W). Shannon entropy HW =

∑
i P (yi|W) log2(P (yi|W)) is a common measure of bal-

ance in a dataset (Mitchell [1997]). The maximum possible entropy HQ = log2(M) corresponds to
the perfectly balanced dataset, while HI = 0 corresponds to a dataset with only one class present.
The goal of this work is to create a video annotation tool that efficiently uses the annotator’s time
to create a dataset that is more balanced compared to the brute-force labeling of each video frame.
We have implemented a two-step process where the first step is an automated filter f(C, S,W) = V
which uses the context C about the driving situation S to retrieve a subset V ⊂ W that has higher
entropy thanW and thus more balanced. The second step g is not automated but implemented as a
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tool that allows a user to manually specify and annotate the subset of g(V) = (V,Y). This dataset
will still hold many images of the windshield class. In the most labor-intensive case of the annotator
labeling every single frame we present, the resulting dataset g(V) is still more balanced than W .
In the less labor-intensive case where the annotator is guided by the counts of samples that were
assigned to each of the classes, we get a dataset that is even more balanced than g(V) but may contain
fewer samples overall.

3 Gaze Zone Annotation Workflow and Model Development Process

We follow a data-centric model development process shown in Figure 1. We receive new video
recordings from the simulators multiple times a day, allowing us to include the data collection process
in the model development process. The question of how much data of what quality is required to be
annotated is continuously evaluated after each new deployment and, if needed, adjusted.

Collect simulator
driving sessions

Analyze 
 driving sessions

with VDI

Annotate gaze 
zones in rare

 event situations

Train and 
evaluate 

model

Deploy in
simulators

Figure 1: Annotation workflow integrated in model development process (derived from Ng [2021]).

The first step is to collect new simulator driving sessions. The driving sessions include all data
required to replay and re-render the complete driving. The driver-facing camera stream is recorded in
sync with the simulation time. The gaze zones for these sessions are then annotated using the two-step
process described above. The session is automatically analyzed by the virtual driving instructor (VDI)
described in Sandberg et al. [2020]. This analysis creates context information C, e.g. timestamps
of events like a lane change. DVAT uses C to filter out a set of situations S in which it expects the
driver to look into specific gaze zones, e.g. a few seconds before a lane change event occurred. S is
used in turn to create an annotation task. This task is then assigned to an annotator. The annotator
does not need to check the complete video but can just annotate one situation and jump to the next
one. It is also possible to semi-automate the annotation process by pre-annotating the data using the
current model and encode it in the annotation task, similar to Russell et al. [2008] and Vondrick et al.
[2013]. This restricts the labeling task to correcting model errors.

The annotators can perform the task at their schedule over the web frontend depicted in Figure 2.
The frontend shows a video of both the driver’s face and the driving scene itself. This flexible setup
allows the use of DVAT for any kind of driving or traffic situation annotation. Being able to playback
the video makes it easier to distinguish where the driver is looking, as the whole head movement is
visible, which is a clear advantage over a single still image. Gaze zone observations are strongly
correlated to driving decisions. Observing a driving maneuver gives additional context on what the
driver is currently doing. This allows us to create highly accurate annotations. The annotator can label
a frame with a gaze zone class by marking the corresponding checkbox as can be seen in Figure 2 (4).
A single frame can be marked by just clicking on the checkbox. If the annotator presses the Ctrl key
and clicks on the checkbox, the label is locked, and the checkbox state will be propagated to the next
frame as long as the lock is engaged. The number next to the label is the count on how often the class
was labeled in this session. The annotator can use this count information to focus on gaze zones that
were labeled less often so far. They can also just skip frames by not putting any label. The model
performance and the quality of the annotations are monitored by domain experts. Domain experts are
in our case, simulator-trained driving teachers. To reduce cost, annotators do not need to be domain
experts. However, to ensure high-quality labels and to train them, domain experts control a random
subset of the labels.

This approach restricts the annotation task from processing a complete video to a couple of situations
with a duration of a few seconds each. After the labeling process is finished, the newly acquired data
is added to either the training or the validation set using a random assignment which itself launches a
new training and validation process. This allows to track model accuracy improvements over time.
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Figure 2: Screenshot of Annotation Framework Web Frontend. 1. Navigation Menu 2. Simulation
visuals streamed from streaming server 3. Controls which allow to jump from situation to situation 4.
Annotation input form 5. Driver camera stream received from streaming server

Table 1: Results Analysis
Gaze Zone Class SourceW Filtered Subset V

(frequency / P (yi|X) )

Windshield 10583 / 90.8% 857 / 56.5%
Left Blindspot 125 / 1.1% 125 / 8.2%
Left Mirror 120 / 1.0% 103 / 6.8%
Rearview Mirror 507 / 4.3% 216 / 14.2%
Right Mirror 204 / 1.8% 99 / 6.5%
Right Blindspot 118 / 1.0% 118 / 7.8%

Entropy (bits) [0, 2.58] 0.63 1.97

The task of the domain experts is also to analyze the deployed model performance to steer further
data collection and annotation requirements.

4 Results and Conclusion

We annotated the gaze zones of a simulator driving session for every frame. This gives us an
approximation of how imbalanced such a dataset would be and how more balanced the dataset is if
we apply our context filtering approach. The distribution and entropy of the resulting source dataset
W can be seen in the second column of Table 1. We use lane changes as the context information C to
extract a more balanced subset of the dataset f(C, S,W ) = V as they had a high occurrence rate in
this particular session. Furthermore, we define the start time of the corresponding situations S as
n = 5 seconds before the lane change and the end time of the situation as the time of the lane change.
As can be seen in Table 1, this increases the entropy of the dataset to 1.97 bits while a perfectly
balanced dataset with 6 classes would have an entropy of 2.58 bits. The number of images that need
to be processed by a human annotator are reduced by 87% in this example. However, most of the
samples from the rare classes remain in the filtered subset.

We presented an efficient method to label gaze image data. By utilizing context information about
driving situations, we automatically get a subset of the complete data which includes a higher
proportion of otherwise rarely occurring classes. This considerably reduces the effort for human
annotators to label a fairly balanced dataset from very unbalanced source data.
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