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Abstract
A key challenge in building a dataset for hate speech detection is that hate speech is
relatively rare, meaning that random sampling of tweets to annotate is highly ineffi-
cient in finding hate speech. To address this, prior work often only considers tweets
matching known “hate words”, but restricting the dataset to a pre-defined vocabu-
lary only partially captures the real-world phenomenon we seek to model. Our key
insight is that the rarity of hate speech is akin to rarity of relevance in information
retrieval (IR). This connection suggests that well-established methodologies for
creating IR test collections can be usefully applied to build more inclusive datasets
for hate speech. Applying this idea, we have created a new hate speech dataset
for Twitter that provides broader coverage of hate, showing a drop in accuracy of
existing detection models when tested on these broader forms of hate. This short
paper highlights our NeurIPS 2021 Datasets and Benchmarks Track paper [21].

1 Introduction
Online hate speech constitutes a vast and growing problem in social media[13, 17, 15, 9, 25, 5]. For
example, Halevy et al. [13] note that the wide variety of content violations and problem scale on
Facebook defies manual detection, including the rate of spread and harm such content may cause in
the world. Automated detection methods can be used to block content, select and prioritize content
for human review, and/or restrict circulation until human review occurs. This need for automated
detection has naturally given rise to the creation of labeled datasets for hatespeech (e.g., [20]).

In general, benchmark datasets play a crucial role in machine learning, translating real-world phe-
nomena into a surrogate research environments within which we formulate computational tasks and
perform modeling. Training data defines the totality of what models have the opportunity to learn,
while testing data provides the means by which we measure empirical success and field progress.
Benchmark datasets thus serve to catalyze research and define the world within which our models
operate. However, research to improve models is often prioritized over research to improve the data
environments in which models operate, even though mismatch between dataset and real-world can
lead to significant system failures in practical deployments [23, 18].
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Figure 1: Hate speech coverage based on which social media posts are annotated. Given some list of “hate
words” to filter posts, some matching posts are indeed hateful (region C2, true positives) while other matching
posts are benign (region C3, false positives). Region C1 indicates false negatives: hate speech missed by the
filter and mistakenly excluded. Random sampling correctly overlaps C1+C2 but is highly inefficient in coverage.

Fortunately, many valuable datasets for detecting hate speech already exist [7, 20, 30, 28, 5, 10, 6, 11].
However, each dataset can be seen to embody an underlying design tradeoff (often implicit) in how to
balance cost vs. coverage of the phenomenon of hate speech, in all of the many forms of expression
in which it manifests. At one extreme, random sampling ensures representative coverage but is
highly inefficient (e.g., less than 3% of Twitter posts are hateful [10]). At the other extreme, one
can annotate only those tweets matching a pre-defined vocabulary of “hate words” [14, 19] whose
presence is strongly correlated with hateful utterances [30, 29, 5, 11, 12]. By restricting a dataset to
only those tweets matching a pre-defined vocabulary, a higher percentage of hateful content can be
found. However, this sacrifices representative coverage for cost-savings, yielding a biased dataset
whose distribution diverges from the real world we seek to model and to apply these models to in
practice [16]. If we only look for expressions of hate matching known word lists, we will completely
miss in our dataset inclusion of any expressions of hate beyond this prescribed vocabulary. This is
akin to traditional AI models that relied entirely on hand-crafted, deterministic rules for classification
and failed to generalize beyond their narrow rule sets, providing only partial representation for
the real-world phenomenon of interest. We illustrate this in the Venn diagram in Figure 1. only
annotating posts matching known “hate words” [5, 30, 12, 11] covers only regions C2-C3. The
prevalence of hate in such datasets is also limited by the word lists used [26]. In short, “Making
effective detection systems for abusive content relies on having the right training datasets” [27].

Our key insight is that the rarity of hate speech are akin to that of relevance in information retrieval
(IR) [24]. This suggests that established methods for creating IR test collections might also be
similarly applied to create better hate speech datasets. To intelligently and efficiently select which
content to annotate for hate speech, we applied two IR techniques: pooling [24] and active learning
(AL) [4, 22]. In both cases, we begin with a very large random sample of social media posts to
search (i.e., the document collection). With pooling, we use existing hate speech datasets and models
to train a diverse ensemble of predictive models. We then prioritize posts for annotation by their
predicted probability of being hateful, restricting annotation to the resulting pool of highly-ranked
posts. For nearly 30 years, NIST TREC has applied such pooling techniques with a diverse set of
ranking models in order to optimize the coverage vs. cost tradeoff in building test collections for IR,
yielding benchmark datasets for fair and robust evaluation of IR systems. Active learning, on the
other hand, requires only an initial set of seed posts from which a classifier is progressively trained to
intelligently select which posts should be labeled next by human annotators. The tight human-AI
feedback loop provides greater efficiency and does not require (nor is biased by) existing hate speech
datasets. We find that AL can effectively find around 80% of the hateful content at 50% of the cost of
pooling. To be clear, such findings are known in the field of IR for building IR test collections [3]; our
translational contribution is showing the utility of these techniques for building hate speech datasets.

With regard to broad coverage of hate speech in our dataset1, pooling yields 14.60% relative coverage,
far better than the best prior work [10]’s combination of random sampling with keyword-based
filtering (10.40%). Regarding efficiency in selecting which tweets to annotate, the prevalence of
14.12% of annotated tweets we find to be hateful exceeds a number of prior datasets [5, 9, 12] while
crucially also providing the aforementioned greater coverage. Just as precision and recall are balanced
in classification, we wish to balance prevalence (efficiency) and coverage (fidelity) in creating a
benchmark datasets that is faithful to the phenomenon while remaining affordable to create. We
benchmark several recent hate speech detection models [8, 1, 2] and find that the performance of
these models drops drastically when tested on these broader forms of hate in our dataset.

1github.com/mdmustafizurrahman/An-Information-Retrieval-Approach-to-Building-Datasets-for-Hate-Speech-Detection
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