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Abstract

Big Data plays a central role in the remarkable results achieved by Machine Learn-
ing (ML) and especially Deep Learning (DL) in the recent years. However, the
difficulty in obtaining a reasonable amount of labeled samples limits ML/DL appli-
cation in various domains, including industrial equipment and system monitoring.
In this paper the need for methods that turn manual labeling into a scalable process
is highlighted. A real world problem is analyzed for which weak supervision
methods, successfully employed in other domains, did not produce acceptable
results. An alternative approach based on clustering ensembles is described and
tested, achieving good performance.

1 Introduction

Big Data (BD) has played a central role in the recent advances achieved by Machine Learning
(ML), especially when considering Deep Learning (DL) [Banko and Brill, 2001, Halevy et al., 2009,
Stonebraker and Rezig, 2019]. Not surprisingly, the fields where DL is more successfully applied
for supervised learning tasks are those where a large amount of labeled data is available such as
image analytics [Sun et al., 2017]. Nevertheless, labeling BD can be considered a major bottleneck
in application of DL in various domains [Stonebraker and Rezig, 2019]. Approaches such as semi-
supervised learning [Ouali et al., 2020] may help in dealing with a limited number of labels in DL
applications, but given a sufficiently complex task and a model of corresponding capacity, more data
will in general be the key for improved performance.

When considering tasks such as detection of objects based on image data, domain knowledge required
for producing labels as well as access to proper data may be widespread. In such a situation,
crowdsourcing may be a good option for obtaining large amounts of labeled samples [Whang and
Lee, 2020]. However, that is not the case in many practical applications. Stonebraker and Rezig
[2019] present a ML application where the data set comprised 30TB of electroencephalogram data.
Such data had to be labeled by trained experts (physicians) which is a much less scalable process
than the crowdsourcing for object detection. The focus of the work presented here is on industrial
problems where the data labeling process may be considered even less scalable than in the cases
above. Such problems present the following key characteristics:

• Multivariate time series of sensor data are used to monitor equipment, systems or processes
to identify the occurrence of specific relevant events or states, such as a system health state.
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• Complexity of the problem and the volume of existing sensor data is such that the use of DL
is justified, however an adequate volume of labeled data is not available.

This type of application will be referred to hereafter as Big Industrial Data Monitoring (BIDM) for
simplicity. It is straightforward to notice that with the ever increasing availability of data driven by
the Industry 4.0 [Khan et al., 2017], and the challenges which continue to be faced by companies
in terms of labeling such data [Fredriksson et al., 2020], more and more applications will fall into
this category. The scalability of the labeling process for BIDM is usually even worse than that of
a medical application due to the reduced number of experts who could support it. While a large
number of physicians around the world are able to interpret EEG signals, this is usually not the
case in industrial processes. Even when a certain company has multiple plants that yield the same
product, each of those plants is usually unique in terms of installed equipment and sensors, data
acquisition and storage. In such cases it is not unusual that only very few people (or maybe a single
person) would be able to adequately interpret historical data from one of those plants to label it for
ML purposes. It must be taken into account that many times some sort of logging is available in the
BIDM context, providing information about historical events of interest. However, as those were in
general not recorded with the purpose of training ML models, they are usually not adequate for the
task (e.g. Leao et al. [2020]).

Manually labeling individual samples may be sufficient for standard industrial ML applications, but
not for BIDM. In order to make DL use realistic in this context, it is of utmost importance that the
information from the subject matter expert (SME) is leveraged to the greatest extent possible. In
this work such goal is considered equivalent to maximizing the scalability of the manual labeling
process, i.e. maximizing the number of labeled samples produced by a limited effort available from
the SME. This is subject to the assumption that labels are of good quality for the task, in the sense
that an application that can benefit from more labels can successfully employ those yielded by the
scalable process to improve performance. Solutions such as active learning [Settles, 2009] can help
in obtaining better labels, but they do not improve scalability. More recently, weak supervision (WS)
has been proposed as an approach to solve the scalability problem, achieving good results in a variety
of practical applications [Bach et al., 2019]. However, it also has limitations as illustrated here based
on a failed attempt to apply it to a real world BIDM problem. An alternative approach is proposed in
this work based on clustering ensemble methods. Using clustering to support data labeling is certainly
not a new idea. It is used, for instance, in the EEG case mentioned above. The contribution described
here is in the use of ensembles specifically for scaling of the manual labeling process, including the
interpretation of the model results as a label confidence metric that is used to guide downstream
decisions. An application based on a real world BIDM problem is presented to illustrate the concepts.
It comprises an unprecedentedly large dataset of measurements from power system sensors (Phasor
Measurement Units - PMUs) covering most of the U.S. territory with duration up to two years. The
application of the proposed method as well as the attempt at applying WS to the same problem are
described.

The remainder of the paper is organized as follows: in section 2 the BIDM problem under considera-
tion is described; methods employed for scaling manual labeling and results of their application are
presented in section 3; section 4 is the conclusion. Given the limited space, technical discussions
are summarized. Referenced works provide further details [Siemens Corporation, 2021, Leao et al.,
2020, Lan et al., 2021].

2 BIDM Problem and Data

The BIDM problem under consideration consists of detection of relevant events that impact power grid
operation based on PMU data. The dataset employed for the analysis, which is unprecedentedly large
for this type of application, was collected by the U.S. Department of Energy and Pacific Northwest
National Laboratory and integrates data from multiple utilities. It consists of ∼26TB of compressed
time series data containing measurements of three-phase frequency, currents and voltages from 446
locations spreading over the three major interconnections (ICs) of the U.S. territory: Eastern, Western
and Texas. The dataset from each IC is independent from the others and each one corresponds to 13
to 24 months of operation. Sampling rate is either 30 or 60Hz, depending on the PMU.

Event logs have been provided for each IC along with the PMU data, also based on integration of
information from multiple utilities. However, they had not been originally created with the purpose
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of supporting ML development and early in the analysis it was considered that they could not be
adequately used as labels. Main reasons for that are:

• Frequent mislabeling: logs indicating events not seen in the data or events seen in the data
but not in logs.

• No localization information: even when the log entries corresponded to events in the data,
such event usually only affected some of the PMUs. However logs did not provide any
association to specific PMUs.

• Mismatch between event categories and patterns in the data: The same log category could
correspond to multiple different patterns in the data and the same pattern to multiple log
categories.

Based on the above, it was decided that a data-centric AI approach would be taken as obtaining proper
labels was considered much more promising for achieving good results than working on development
of more advanced modeling approaches. Leao et al. [2020], Siemens Corporation [2021] provide
more details about the datasets and event logs, including data quality issues and pre-processing.

3 Scalable Data Labeling Methods and Results

3.1 Weak Supervision

Given the recent successful applications of WS in various contexts [Bach et al., 2019] it was the
initial approach tried for making the manual labeling process scalable. Given the large data volume
and the dynamic nature of the BIDM problem, Flying Squid tool [Fu et al., 2020] was employed for
this task due to its superior computational performance compared to other WS approaches, results in
the form of label probabilities and the possibilities of defining dependencies among labels.

Three sources of WS rules were used:

• Based on mapping of event logs to specific types of events of interest. This mapping was
performed by a SME based only on the available descriptions. This resulted in 4 rules.

• Based on a SME’s analysis of what the patterns in the data should look like for different
types of events. This produced 7 rules.

• Based on industry standards associated to the data such as IEEE [2019]. This yielded 6
rules.

The definition of which subset of the rules would be applicable to each type of event of interest have
also been performed by a SME.

Those rules were applied to the data from the West IC. The use of dependencies among labels resulted
in a large penalty in computational performance and did not result in relevant changes in results
based on tests with small subsets of the data, therefore they were not employed. SMEs have manually
labeled events happening in a small portion of the data, corresponding to a few days, so that a sanity
check could be performed. The event categories for which we had the largest number of labels from
this process, corresponding to short circuit and trip with no short circuit, were employed for this
verification. WS results achieved an AUROC below 0.6, indicating that the performance was not
much better than random guessing in this case.

3.2 Clustering Ensemble

The steps associated with the clustering ensemble approach are described below. Prior to those,
pre-processing and a coarse filtering of the data have been performed. Lan et al. [2021], Siemens
Corporation [2021] present a more detailed description.

1. Calculating various features from each sample corresponding to a 10s multivariate time
window. Up to 152 features have been extracted from each sample, including basic statistics
such as mean and median, temporal characteristics such as slope and number of turning
points, and frequency domain metrics such as fundamental frequency. This step optionally
also included sample pre-filtering based on DBSCAN for detecting clear matches to defined
categories and excluding them from further processing.
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2. Training multiple clustering models based on resulting features. Two configurations of
the clustering ensemble have been tried: (1) homogeneous ensembles based on K-means
models with different numbers of clusters; (2) heterogeneous ensemble combining K-means,
Hierarchical Clustering and Gaussian Mixture Models.

3. Manually labeling each resulting cluster. A few different categorizations of events have
been tried during the analysis, but ultimately 10 categories were used to manually label each
cluster, corresponding to various patterns found in the data as analyzed by SMEs. Multiple
categories could be associated with the same cluster.

The method is defined as follows. Given features associated to Ns samples, Nm clustering models are
trained, each one with nk, k = 1, 2, ..., Nm, clusters. Therefore, each sample j = 1, 2, ..., Ns gets
associated to Nm clusters. Each of the resulting clusters is manually labeled based on Nc categories.
A confidence metric αi,j associated with sample j belonging to category i = 1, 2, ..., Nc is defined
as αi,j = (1/Nm)

∑
k Ik,i,j where Ik,i,j is an indicator function which is equal to 1 if sample j

is associated to category i in model k and 0 otherwise. Therefore,
∑

i αi,j = 1 ∀j and the most
conservative selection of samples for category i in terms of avoiding mislabeling is performed by
selecting the subset Sp

i |αi,j = 1∀j ∈ Sp
i as positive samples and the subset Sn

i |αi,j = 0∀j ∈ Sn
i as

negative ones.

Employing such method was key to obtaining a reasonable number of good quality labels for multiple
event categories. Hundreds of thousands of labels for each event category could be generated based on
a few hundreds of labeled clusters. The final set of labels has been considered of good quality based
on the same sanity checks performed for WS and additional inspection of sample results by SMEs.
They were then used to train deep semi-supervised learning (DSSL) models for detection of events,
in order to leverage also the unlabeled data. DSSL models were based on autoencoder architectures
using 1-D convolutional layers and fully connected ones, with an additional head appended to the
encoder for binary classification of events. Due to the limitations in space, details are presented only
for a single model for illustration purposes. This model was trained for detection of loss of generation
events. 160 clusters have been labeled in an ensemble of 3 clustering models. This was the manual
labeling effort required for obtaining all labels, not only the ones in this category. A total of 314050
labeled samples were obtained for the loss of generation category employing the most conservative
selection approach described above. From those, 11226 were positive ones. Trained DSSL model
performance was assessed based on held out data achieving 99.87% precision and 99.96% recall. As
additional validation, known events of this type reported by NERC [NERC, 2017, NERC and WECC,
2018] have been correctly identified by this model with no false positives from models associated to
other categories.

4 Conclusion

This work discusses the challenges associated with proper use of BD in industrial applications, given
the limitations in current manual labeling processes. Identifying the occurrence of specific types
of events and states in equipment or systems is one example of a broad category of use cases with
ubiquitous applicability and high value to industry for which implementation is limited due to such
challenges. As Industry 4.0 paradigms are producing more and more data, BIDM applications, as
defined above, become increasingly common.

Existing tools for using BD with a reduced number of labels or improving the information aggregated
by labels, such as semi-supervised learning or active learning, can help, but having a larger number
of labeled samples provides much broader possibilities as currently verified in the image analytics
domain. Therefore, tools are needed to make the manual labeling process scalable. Weak supervision
is becoming increasingly popular for this purpose, but it also has its limitations. A failed attempt to
apply WS to a real world BIDM problem was presented as well as an alternative approach based on
clustering ensembles which has provided good results, achieving scalability and producing means for
evaluating the confidence associated with labels. Future work should investigate the limitations of
the proposed approach and compare it further to WS methods or other alternatives in the context of
additional BIDM applications.
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