
Human-inspired Data-centric Computer Vision

Satoshi Tsutsui
Indiana University

USA
stsutsui@indiana.edu

David Crandall
Indiana University

USA
djcran@indiana.edu

Chen Yu
University of Texas at Austin

USA
chen.yu@austin.utexas.edu

Abstract

The vast majority of work in computer vision focuses on proposing and applying
new machine learning models and algorithms for visual recognition. In contrast,
relatively little work has studied how properties of the training data affect these
models. For example, the Internet images and videos commonly used for training
are very different from the inputs that human vision systems receive in our everyday
lives. If the goal of computer vision is to build vision systems as intelligent as
humans, we argue that we should study the actual inputs to human vision systems,
and get hints to improve the training data for computer vision models. We use
wearable cameras and eye gaze trackers to collect video data that approximates
people’s everyday visual fields of views, and find the structure of the data that can
potentially improve computer vision systems. This paper presents our previous
work on this direction and advocates data centric computer vision inspired by
human vision.

1 Introduction

It has been almost ten years since the field of computer vision experienced a paradigm shift in the
2012’s with deep neural networks [8]. While traditional work in computer vision manually engineered
algorithms using hand-crafted visual features [12], the modern approach learns to perform tasks in a
data driven manner. We collect numerous examples to show what we want to recognize from images,
and train a powerful deep learning [9] model that can learn to predict the desired outputs directly
from images of pixels. This data-driven approach turned out to be more effective than traditional
methods on many computer vision tasks including object recognition [8], object detection [15], image
segmentation [11], and action recognition [22].

Despite the data-driven nature of modern computer vision, the majority of research does not focus
on the data side, but engineers new models or loss functions that are more effective than previous
methods. These studies typically use fixed common benchmark data to show the effectiveness of
their method, claiming the state-of-the-art, which just means that the proposed method scores higher
than any previously known method. These model engineering studies are indeed an essential part of
the progress of the field, as achieving the state-of-the-art is an important contribution. However, we
would like to focus on the relatively understudied side of modern computer vision – the training data,
which definitely affects the final performance of the trained model.

The training data is an essential part of modern computer vision because many people reuse deep
neural networks trained from millions of images and videos for various computer vision applications.
For example, ImageNet [17] consists of millions of annotated images of various objects that are
collected from the Web, and is a standard dataset to train convolutional neural networks (CNNs) for
object recognition. Moreover, people often initialize CNN parameters from a model pretrained on
ImageNet and use the image features extracted from the model as a generic image representation not
only for object recognition but also for many other image understanding tasks (object detection [15],
semantic segmentation [11], etc).
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Figure 1: Our experimental setup. Child-parent dyads played together with a set of toys in a
naturalistic environment, while each wore head-mounted cameras to collect egocentric video and eye
gaze positions (left). A stationary camera recorded from a third-person perspective (right).

Despite that millions of images and videos are commonly used for training visual representations
for computer vision, few people investigate the quality of the training data itself and its effect on the
final model performance. It is not clear, for instance, how to characterize the quality of large-scale
training data, or what kind of structure in the data leads to better model performance. In this paper,
we propose to perform systematic studies of the training data as a critical factor to determine
the performance of computer vision systems.

While we are not the only people who advocate study of the data side [13], our approach is distinct in
that it is inspired from “training data” that the human vision system would receive. In fact, Internet
images/videos [2, 17], which are often used for pretraining modern computer vision system [7], are
very different from what human vision systems receive in our daily life. If the goal of computer
vision is to build vision systems as intelligent as humans, we argue that we should scientifically
observe the inputs to human vision systems and get inspiration for better designing training data for
computer vision models. We note that, while we observe the inputs to human vision systems and try
to get inspiration to computer vision, we do not try to build computer vision systems with structural
similarities to human vision systems. Our motivation is still to advance modern computer vision from
the point of training data. This is similar to the fact that neural networks were inspired from human
neural networks [16], but the purpose was not to accurately reproduce a human neural system but
to design a highly capable learning machine. We get inspiration from what human vision systems
receive, analyze the inputs to human vision systems, and aim for discovering the structure of
the training data that can better train modern computer vision models.

To approximately capture the inputs to human vision systems, we apply the technologies of wearable
cameras and eye-gaze trackers, which can capture data from humans’ point of view. We record
videos using wearable cameras mounted on people’s head, which can record egocentric videos (e.g.,
Figure 1). Moreover, we apply these technologies to collect visual data from the point of the one
of the best visual learning system in the world – the human child. Children are highly efficient
learners, and better understanding how they succeed at visual learning could help build better machine
learning and computer vision systems. Based on this ambitious motivation, we have a long-running
project to apply egocentric vision for infants. The project has already provided many insights both
for developmental psychology [23] and machine learning [1]. Other groups are also investigating
similarly-motivated studies [14, 25], reflecting the increasing interest in the intersection of egocentric
vision and infant learning in the community of machine learning.

This manuscript advocates data-centric computer vision inspired by human vision. Specifically, we
believe that learning from infants, which are probably one of the most efficient visual learners in the
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world, can inspire us a lot about the data to train machine learning systems. We present our previous
work [1, 24] as a case study of data-centric computer vision inspired by human vision.

2 Methodology and Findings

To study infant visual learning in everyday environments, we have collected egocentric video and eye
gaze tracking data from children and their parents as they freely play with 24 toy objects (Figure 1).
The wearable cameras provides an approximation of the child’s field of view — the “training data”
that they use to learn object models. We study the properties of this “training data,” for example using
it to train CNNs. We find that deep networks trained from child views perform significantly better
than parent counterparts recorded in exactly the same environment. We also find that egocentric
images collected from children have a unique distributional property compared to adults, which is
probably the cause of the higher CNN performance. We refer to our prior work [1, 24] for more
details. In the rest of this section, we summarize our finding that simulating the unique property
found in the child attended views can train more generalizable image classifiers for our own collected
egocentric dataset, and also for a natural image classification dataset.

2.1 Reverse-engineering the structure of child data

Because we find that children’s attended views have a unique diversity compared to the parent
counterpart [24], we attempt to “reverse-engineer” the structure of the children’s data so that we can
apply the findings to provide better insights for data collection for training image classifiers. We
proceed by trying to synthetically generate a training dataset that works as well as the infant dataset,
by artificially controlling the proportion of images that contribute to dataset diversity and those that do
not. We approximate these sets as diverse set and similar set using pairwise GIST [21] distances. (The
definitions of diverse/similar images are provided in Sec. 4.3 of our previous work [1]). Specifically,
we created new datasets consisting of a fraction p of randomly-sampled images from the similar
subset, and fraction 1− p of random images from the diverse subset.

We train CNNs (VGG16 [20]) using these subsets and compute accuracy on the held-out test images
of the same objects in the third-person canonical view for 24-way object classification (See our
previous work [1] for details). Figure 2a presents accuracy for training datasets subsampled to have
different numbers of exemplars per class (25, 50, 100, and 200) with different proportions of diverse
and similar images. We see that training sets consisting only of diverse images lead to significantly
better results than those consisting only of similar training sets (e.g., about 52% versus 32% for 25
images per class), until the number of images per class reaches 200. This is because when there are
200 images per class, the similar set is itself quite diverse.

More importantly, we see that for any number of exemplars per class, a mixture of diverse and similar
sets always performs significantly better than either set alone. This suggests that a high-quality
training set needs both similar and diverse training instances. Moreover, for the dataset size of 100
and 200 examples per class, the subsets consisting of 75% similar images and 25% diverse images
are as good as the original sets. This complements the finding in previous work [1] – the data created
by toddlers, which consists of a mix of both similar and dissimilar instances, is a unique combination
of clustering and variability that may be optimal for object recognition. Indeed, we note that for the
dataset size of 25 and 50, the original set outperforms the any combination of similar and diverse
set. This suggests that the combination of similar and diverse sets is not the only characteristics that
makes the child data better, and how toddlers collect data efficiently in the data-scarce situation is
interesting future work.

2.2 Generalizing insights from child data to computer vision

Inspired by the dataset from toddlers, the section 2.1 shows a key factor that makes the toddler data
better – combinations of similar and diverse images. Can this same insight be used to collect more
generalizable training datasets in computer vision?

The vast majority of recognition datasets in computer vision include training and test splits that
are sampled from the same dataset. In contrast, we need a dataset that can test our hypothesis that
specific combinations of diverse and similar images in training could lead to better generalization in
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Figure 2: (a) Results of training on various mixtures of diverse and similar child egocentric
data while testing on independent third-person images, as a function of number of examples per
class. Training on purely diverse (dark blue) or purely similar (yellow) subsets leads to significantly
less accurate classifiers than the original child data (red), but a mixture of about 75% similar and 25%
diverse leads to accuracy that is nearly as good. (b) Results of training on various mixtures of
diverse and similar subsets of COCO while testing on ShapeNet images. A mixture of similar and
diverse subsets leads to better accuracy on ShapeNet than the original COCO distribution, suggesting
that a training distribution like that of the child data leads to more generalizable classifiers.

testing. This, of course, is the way in which children are able to generalize from, say, playing with
toy firetrucks to recognizing real firetrucks as they drive by.

To do this, we constructed a dataset where the training data is from natural images while the test set is
from canonical images of the objects. We collected training images from the MS COCO [10] dataset,
and test images from ShapeNet [3] corresponding to the abstract representation of the objects. The
dataset has 12 classes (aeroplane, bicycle, bus, car, horse, knife, motorcycle, person, plant, skateboard,
train, and truck). We refer the previous work [24] for more details and sample images.We note a
key difference between this and the toyroom dataset task above: that task considered object instance
recognition (identical objects for training and testing), but here we consider the more challenging and
realistic problem of category recognition.

We performed similar experiments on this dataset as we did for child data, and show the results
in Figure 2b as a function of number of images per class. As with the child data, the results on
this dataset show that training datasets consisting only of diverse images lead to significantly better
accuracy than those consisting only of similar images. In addition, the best accuracy is a combination
of similar and diverse images, meaning that we need both similar images, which possibly help create
a prototype representation, and diverse images, which help to capture the representation of less
typical cases. A notable difference from the child results is the accuracy of random subsets. Random
subsets are inferior to the best combination of similar and diverse images. This suggests that random
sampling, which is often used in computer vision work, is not always the best strategy.

3 Conclusion

Majority of papers published in top computer vision venues are engineering oriented and establish
state-of-the-art performance on benchmark datasets by introducing new models or algorithms. More-
over, lacking a novelty in the model side is unfortunately considered as a major negative point in
top venues. For example, it is reported that dataset papers without introducing new models tend
to be unpublished preprints (see Sec. 5.4 of Scheuerman et al. [19]). Nonetheless, we believe that
it is scientifically important to study the training data as a critical factor to affect the performance
of these state-of-the-art models. We take our unique position of getting inspiration from infant’s
vision system, which is one of the most efficient visual learners. As a case study of our position, we
demonstrated that simulating the distributional property discovered from infant’s views can train
more generalizable image classifiers. We hope that our work inspires more people to study computer
vision and machine learning not only from the point of model development but also from the point of
training data.
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