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Abstract

Neonatal seizures are common among infants and can be detected with an elec-
troencephalogram (EEG). The EEG signals are complex time-series using multiple
channels. Human domain experts are often in disagreement when labelling neona-
tal seizure data. Only few studies will include labels from multiple experts, as
annotating hours of EEG recordings is time consuming and expensive. In this study
we investigated the differences in performance of a deep-learning-based neonatal
seizure detector trained using single expert labelling versus data labelled using
the consensus of multiple experts. Results indicate that there are differences even
when the experts are in minor disagreement. We find that excluding ambiguously
labeled data is important when training a neonatal seizure detector.

1 Introduction

Seizures are common among infants, with a prevalence of 1 – 5 per thousand live births [4]. Since
untreated seizures can cause brain damage [1], it is paramount to detect them early. Seizure detection
in infants is complicated by the fact that the majority of seizures cannot be observed clinically [2]. The
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current gold standard for neonatal seizure detection (NSD) is a multi-channel electroencephalogram
(EEG) recording with simultaneous video, analyzed by a human expert [14]. The frequency and
duration of seizures within an EEG are of clinical interest.

EEGs are time-series that represent the electrical activity of the brain. Neonatal EEG recordings are
usually obtained with 4 – 20 electrodes that are placed on the scalp and last from a few hours to days.
Analysis of an EEG requires extensive training and is time consuming which hampers widespread
use. Automating the procedure is therefore of obvious clinical significance. The measurements have
high inter- and intra-patient variability, the EEG is highly dependant on the age of the neonate, its
condition [7, 8] and medication [6, 12]. Non-cerebral artifacts such as heartbeat, breathing and infant
care frequently contaminate the signal and may mimic seizure activity. Due to the complexity of
neonatal EEG signals, human experts are often in disagreement [11], in particular when seizures are
short in duration [15].

Even though human experts provide the gold standard neonatal seizure labels, label noise is likely
to be present in the training data which can have a negative effect on the performance of a machine
learning model [18]. To the best of our knowledge there are only a few studies in the field of neonatal
seizure detection addressing label noise by utilizing multiple human-expert labels [11, 13, 15, 17]. In
this work we compare five strategies for utilizing labels from multiple human experts in the training
of a NSD based on a deep convolutional neural network.

2 Methods

The data set used in the experiments contains segments from 79 neonatal EEG recordings, each
approximately 1 hour in length, and accompanying labels from three human experts with 1 sec
resolution [16]. The recordings contain 19 channels sampled at 256 Hz that were combined in a
longitudinal montage (a frequently used pairwise combination of channels). The segments were split
into 16 sec long blocks with 12 sec overlap. The signals were filtered with a 6th order Chebyshev
Type 2 band-pass filter with cut-off frequencies of 0.5 Hz and 32 Hz, down-sampled to 32 Hz and
standardised so that the mean and standard deviation were zero and one, respectively. Each 16 sec
interval was labeled as a seizure or a non-seizure interval per human expert (A, B or C), the majority
vote and consensus amongst experts, resulting in five sets of labelings. Ambiguous segments, i.e.
segments that were partly labeled as seizure and partly as non-seizure, were excluded. Figure 1
illustrates scoring for a typical EEG segment and the total number of seizure/non-seizure segments is
given in table 1. Non-seizure segments were approximately 8 times as many as the seizure segments.
The non-seizure segments were therefore randomly sub-sampled to obtain balanced training sets.
One network (NSD) was trained for each of the five labelings in table 1.
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Figure 1: 10 sec EEG segment (channel Fz-Cz), labeling from scorers A, B and C, majority vote and
consensus labels. Seizure areas are annotated with red, non-seizure with grey and ignored parts with
dashed grey line.

A convolutional neural network proposed by Stevenson et al. [17] was used as a feature extractor. It
consists of 10 convolutional layers with 32 filters of size 3 and one convolutional layer with 2 filters
of size 3. Each convolutional layer is followed by a batch normalization layer and ReLU activation.
Before the fourth, seventh and tenth convolutional layers, average pooling is applied with filters of
size 8, 4 and 2 respectively. The stride was set to 3 for all three pooling layers. The feature extractor
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Table 1: The total number of seizure and non-seizure segments available for each labeling; human
experts (A, B and C), majority vote and consensus labels. The number of seizure and non-seizure
segments exclusive to each expert are in parentheses.

Labeling Seizure Non-seizure

A 10482 (332) 85075 (619)
B 14170 (2129) 81266 (401)
C 11127 (1043) 83511 (394)

Majority vote 11658 84847
Consensus 8560 78260

is followed by an attention layer [9] and a fully connected layer with two output neurons and softmax
activation.

Cross entropy was used as a loss function and the model parameters were optimized using the Adam
optimizer with a mini-batch size of 128. The learning rate was set to 0.001 in the beginning and
halved every 10 epochs. The model was trained for 40 epochs. Experiments using 30 and 50 epochs
gave similar results (data not shown). A fixed number of epochs was used during training due to the
prohibitive computational cost of using leave-one-patient-out cross-validation for parameter tuning.

Each of the five models were tested on labelings from experts A, B and C to investigate whether a
model trained on labels from a single expert, under- or over-performs models trained on labels from
the other experts in any significant way. The models were also tested on the consensus labels. The
models were evaluated by leaving one subject out at a time to avoid train-test set overlap. There
are 38 patients with at least one 16 sec long consensus seizure segment in the data set [16] and the
results report below are based on data from these 38 patients. Cohen’s kappa (κ) was used as the
performance metric instead of ROC AUC since the test set was highly imbalanced and clinical utility
of a NSD does not necessarily follow from a high AUC value [9].

The code used in the experiments was written in Python using PyTorch 1.7.1 and executed on a
NVIDIA GeForce GTX 1080 Ti GPU.

3 Results and discussion

The main results are presented in figure 2. The figure shows that all the models performed poorly
(i.e. low kappa values) on a small subset of patients. The poor performance is partly caused by the
relatively small training set and high inter-patient variability. Some of the recordings have very
few seizure or non-seizure segments which means that the performance metric is very sensitive to
predictions from these segments.

Experts often disagree on the exact start and end times of seizures. They disagree also on seizures
that are shorter than 30 sec in duration [15]. The consensus set excludes these segments, resulting in
seizure segments that are in a sense “clean”. This appears to be beneficial since the model trained on
the consensus labels performs best overall (figure 2). The mean kappa values are between 0.52 and
0.61 for the NSD trained with consensus data.

The NSD trained with labels from expert B performs worst, irrespective of the test set. Table 1 shows
that this expert labeled 27 % - 35 % more segments as seizures than experts A and C. Some of these
additional seizure segments are confusing the classifier, leading to an increased number of false
seizure predictions. This led to higher sensitivity and lower specificity (table 2).

Training on labels from expert A resulted in a model that performed the best, out of the three models
trained on labels from a single expert. Expert A annotated the least number of exclusive segments
(table 1) and agreed with at least one of the other two experts for most parts of the EEG recordings.

4 Conclusion

The experiments show that NSD performance can depend strongly on the expert responsible for
scoring the EEG, as the results for expert B clearly show. The results from expert B also show
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Figure 2: Comparison of Cohen’s kappa (κ) values of models trained using different labels illustrated
by the different colours. Results are compared with different test labels. Solid lines denote the mean
values.

Table 2: Mean sensitivity and specificity values for different training/test labels.

Test labels

Sensitivity [%] Specificity [%]

Training labels A B C Consensus A B C Consensus

A 76.77 67.55 75.93 80.51 89.96 91.22 90.90 92.28
B 79.12 71.41 77.38 80.74 81.93 82.73 82.87 83.85
C 75.94 66.85 73.69 78.30 88.04 88.76 88.92 90.08
Majority vote 78.68 70.19 76.36 80.80 86.91 87.96 87.89 89.16
Consensus 75.15 66.19 73.51 78.47 91.62 92.61 92.37 93.68

significant differences compared to the model using the majority vote in the training set. Improvement
in classifier performance due to using majority vote of multiple domain experts has previously been
observed in a study on prostate cancer classification [10].

When labels from multiple experts are available, using consensus labels can reduce label noise and
improve the overall accuracy of the NSD. This is in agreement with previous findings on other types
of data [18]. It further indicates that if the data labels are close to being noise-free, a clinically
relevant NSD can be obtained even when the training set is relatively small. For comparison, kappa
values calculated between the human experts over the entire data set were in the range 0.63 to 0.73.

Models trained on labels from a single expert did not result in models that captured the criteria the
experts used to identify seizure segments. Explanations include the model architecture not capturing
all the information an expert uses to determine the absense/presence of seizures. When scoring an
EEG, experts frequently inspect segments that occur earlier or later in the recording. This behaviour
is not captured by the convolutional network used here. Another explanation could be inattentional
blindness [3]. However, there does not exist an absolute truth in EEG recordings, comparable to
biopsies in skin cancer detection [5] and mistakes can not be easily confirmed.

To conclude, when using labels from one human expert it must be kept in mind that the labels are
subjective to the expert and the performance of a model is highly dependent on the expert labelling
the data. Therefore, when training a NSD it is important to reduce the label noise by excluding
segments with ambiguous labels.

4



Acknowledgments and Disclosure of Funding

Authors thank Nathan J Stevenson for sharing the architecture of the neural network feature extractor
and the pre-processing of data. This project receives funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 813483.

References
[1] Stella T Björkman, Stephanie M Miller, Stephen E Rose, Christopher Burke, and Paul B Colditz. Seizures

are associated with brain injury severity in a neonatal model of hypoxia–ischemia. Neuroscience, 166(1):
157–167, 2010.

[2] Geraldine B Boylan, Nathan J Stevenson, and Sampsa Vanhatalo. Monitoring neonatal seizures. In
Seminars in Fetal and Neonatal Medicine, volume 18, pages 202–208. Elsevier, 2013.

[3] Trafton Drew, Melissa L-H Võ, and Jeremy M Wolfe. The invisible gorilla strikes again: Sustained
inattentional blindness in expert observers. Psychological science, 24(9):1848–1853, 2013.

[4] Hannah C Glass, Courtney J Wusthoff, Renée A Shellhaas, Tammy N Tsuchida, Sonia Lomeli Bonifacio,
Malaika Cordeiro, Joseph Sullivan, Nicholas S Abend, and Taeun Chang. Risk factors for EEG seizures in
neonates treated with hypothermia: a multicenter cohort study. Neurology, 82(14):1239–1244, 2014.

[5] Achim Hekler, Jakob N Kather, Eva Krieghoff-Henning, Jochen S Utikal, Friedegund Meier, Frank F
Gellrich, Julius Upmeier zu Belzen, Lars French, Justin G Schlager, Kamran Ghoreschi, et al. Effects of
label noise on deep learning-based skin cancer classification. Frontiers in Medicine, 7:177, 2020.

[6] Gregory L Holmes and Faye Korteling. Drug effects on the human EEG. American Journal of EEG
Technology, 33(1):1–26, 1993.

[7] Richard A Hrachovy and Eli M Mizrahi. Atlas of neonatal electroencephalography. Springer Publishing
Company, 2015.

[8] Aatif M Husain. Review of neonatal EEG. American journal of electroneurodiagnostic technology, 45(1):
12–35, 2005.

[9] Dmitry Yu Isaev, Dmitry Tchapyjnikov, C Michael Cotten, David Tanaka, Natalia Martinez, Martin
Bertran, Guillermo Sapiro, and David Carlson. Attention-based network for weak labels in neonatal seizure
detection. Proceedings of machine learning research, 126:479, 2020.

[10] Davood Karimi, Haoran Dou, Simon K Warfield, and Ali Gholipour. Deep learning with noisy labels:
Exploring techniques and remedies in medical image analysis. Medical Image Analysis, 65:101759, 2020.

[11] Aileen Malone, C Anthony Ryan, Anthony Fitzgerald, Louise Burgoyne, Sean Connolly, and Geraldine B
Boylan. Interobserver agreement in neonatal seizure identification. Epilepsia, 50(9):2097–2101, 2009.

[12] Rawad Obeid and Tammy N Tsuchida. Treatment effects on neonatal EEG. Journal of Clinical Neurophys-
iology, 33(5):376–381, 2016.

[13] Alison O’Shea, Gordon Lightbody, Geraldine Boylan, and Andriy Temko. Neonatal seizure detection from
raw multi-channel EEG using a fully convolutional architecture. Neural Networks, 123:12–25, 2020.

[14] Ronit M Pressler, Maria Roberta Cilio, Eli M Mizrahi, Solomon L Moshé, Magda L Nunes, Perrine Plouin,
Sampsa Vanhatalo, Elissa Yozawitz, Linda S de Vries, Kollencheri Puthenveettil Vinayan, et al. The ilae
classification of seizures and the epilepsies: Modification for seizures in the neonate. position paper by the
ilae task force on neonatal seizures. Epilepsia, 62(3):615–628, 2021.

[15] Nathan J Stevenson, Robert R Clancy, Sampsa Vanhatalo, Ingmar Rosén, Janet M Rennie, and Geraldine B
Boylan. Interobserver agreement for neonatal seizure detection using multichannel EEG. Annals of clinical
and translational neurology, 2(11):1002–1011, 2015.

[16] Nathan J Stevenson, Karoliina Tapani, Leena Lauronen, and Sampsa Vanhatalo. A dataset of neonatal EEG
recordings with seizure annotations. Scientific data, 6:190039, 2019.

[17] Nathan J Stevenson, Karoliina Tapani, and Sampsa Vanhatalo. Hybrid neonatal EEG seizure detection
algorithms achieve the benchmark of visual interpretation of the human expert. In 2019 41st Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages
5991–5994. IEEE, 2019.

[18] Xingquan Zhu and Xindong Wu. Class noise vs. attribute noise: A quantitative study. Artificial intelligence
review, 22(3):177–210, 2004.

5


	Introduction
	Methods
	Results and discussion
	Conclusion

