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Abstract

Synthetic aperture sonar (SAS) is an underwater remote sensing technique for
applications such as seafloor characterization and object detection. However, un-
derwater SAS datasets are both extremely expensive to collect and difficult to
control and repeat. We propose an in-air SAS measurement apparatus (AirSAS)
made from commercial off-the-shelf laboratory equipment to generate controlled,
repeatable datasets. AirSAS is both flexible and sufficiently delicate to capture the
complex acoustic phenomena inherent in SAS measurements. The system allows
us to physically control the differences between classes of interest, and observe
acoustic phenomenology that is rare or expensive to collect underwater. Accord-
ingly, we can measure and tune which acoustic phenomena deep learning models
are sensitive to. AirSAS can generate both circular and linear track collections.
The first iteration of the AirSAS dataset is currently under curation.

Synthetic aperature sonar (SAS) generates high resolution imagery by coherently combining time
series collected by a moving sensor array [1] and is a central platform for sonar object detection and
classification problems. It is believed that particular acoustic scattering phenomena associated with
objects, such as resonance and multiple reflections, are important for detection and classification with
neural networks [2–5]. However, observations of relevant objects are rare in field data and image
quality can be strongly impacted by environmental disturbances[6, 7]. Subject matter expertise is
often necessary to label acoustic images, and even still the associated labels frequently suffer due
to inexact knowledge of seafloor composition or object locations. The ubiquitous nature of these
complications exacerbate the already-difficult problem of understanding the strengths and weaknesses
of a given machine learning model in terms of interpretable physical phenomena.

Tightly controlled experimental data sets are necessary for the detailed evaluation of models trained
on SAS data. AirSAS was developed to generate relevant object scattering datasets more quickly
and inexpensively than in underwater surveys or tank experiments [8–11]. The system is capable of
both linear and circular collection geometries (mimicking common SAS survey patterns in fielded
applications) and captures key acoustic phenomenology in controlled, repeatable datasets. The system
uses commercial off-the-shelf hardware and is also equipped with optical and infrared depth cameras
both at the acoustic sensor position and above the imaging stage, allowing for multi-modal analysis.

A key capability AirSAS enables is measurement of the physical differences between classes. In a
prototype AirSAS dataset, 16 cylindrical objects with varying physical properties were imaged using
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Figure 1: AirSAS image and spatial wavenumber (k-space) representation comparisons of object
classes. The top row compares Pipe and Hollow in the image domain, and bottom row compares
Solid and Hollow in k-space. Controlled measurements and careful alignment post-processing allow
us to compute the difference signals (right column), highlighting key acoustic phenomenology that
are expected be discriminatory between respective class pairs. Robust machine learning models
trained to distinguish these classes are expected to utilize energy from this signal.

a circular track. The top left panel of Figure 1 shows a SAS image of a cylinder from the Pipe class,
and the top-middle panel shows one from the Hollow class. The physical difference between the Pipe
and Hollow classes is whether the ends of the cylinder are open or closed, respectively. Because the
AirSAS apparatus is so controlled, we can use signal processing to align the images and compute
their direct subtraction (visualized in the top-right panel). The resulting difference signal highlights
two physical phenomena: (1) the direct reflection off of the closed ends of the Hollow object, which
appear as bright, concentrated energy, and (2) the multi-path scattering returns from the insonifying
ping traveling through the pipe, which is less focused due to mismatch with the image formation
assumptions [1]. The difference signal can thus be used as a pixel-level label of these discriminatory
physical phenomena.

The bottom row of Figure 1 shows a similar comparison between a cylinder from the Hollow class
(bottom left) and a one from the Solid class (bottom middle) in the spatial wavenumber domain
(k-space). In k-space, the radial axis denotes frequency; the center has no signal energy because
the data is band-limited from 10kHz-30kHz. The discriminatory acoustic phenomenon that results
from the physical differences between Hollow and Solid cylinders is the late-time resonant response,
where the insonifying ping has temporarily coupled with the object before returning to the sensor
(the Hollow cylinder resonates, the Solid one does not). Resonance manifests as energy concentrated
along a radial axis, as is highlighted in the difference signal in the bottom-right panel.

We hypothesize that models relying on verifiable physical phenomena will have more predictable
performance as long as that phenomena is available. By generating data that highlights and segments
the specific acoustic phenomenology, the extent to which a deep model is focused on those phenomena
can be measured [12], and models can even be regularized to utilize this physics-based knowledge [13].
As a preliminary example, we trained tiny CNNs proposed for object detection in SAS imagery [14]
to perform binary classification on the Solid vs. Hollow problem. The trained models were evaluated
on a test set, and the bottom-level contrastive saliency maps [12] were recorded for each sample
(using the model’s predicted class as the "top" node). Thanks to the high precision afforded by
AirSAS, these maps can be aligned and compared with the corresponding pixel level feature label
map (i.e. the feature difference images in the rightmost column of Figure 1). In the left panel of
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Figure 2: Composite saliency maps (left column) and reference feature maps (right).

Figure 2, we show the composite saliency map, obtained by averaging aligned sample saliency maps
by class. The right panel shows the average difference image, computed by averaging the differences
between each test set image and its complement (where all features are kept the same except for that
which distinguishes the classes). This highlights the features expected to be discriminatory. Using
image comparison techniques, we can measure the consistency between the utilization map (left) and
the pixel-level feature labels (right). These data-centric consistency metrics values represent how
sensitive a model is to specific physical phenomena. We are currently investigating how to use these
metrics for regularization, augmentation, and interpretable analysis of object detection models trained
on large underwater SAS datasets.

The AirSAS tool will enable researchers to study, and eventually control, how models react to
signatures typically found in the “long tail” of large underwater datasets. The preliminary dataset is
currently available to interested readers by contacting the authors. The first published version of the
AirSAS dataset is currently under curation.

References
[1] David William Hawkins. Synthetic Aperture Imaging Algorithms: with application to wide

bandwidth sonar. PhD thesis, University of Canterbury. Electrical and Computer Engineering,
10 1996.

[2] JA Bucaro, BH Houston, M Saniga, LR Dragonette, T Yoder, S Dey, L Kraus, and L Carin.
Broadband acoustic scattering measurements of underwater unexploded ordnance (uxo). The
Journal of the Acoustical Society of America, 123(2):738–746, 2008.

[3] BH Houston, JA Bucaro, T Yoder, L Kraus, J Tressler, J Fernandez, T Montgomery, and
T Howarth. Broadband low frequency sonar for non-imaging based identification. In
OCEANS’02 MTS/IEEE, volume 1, pages 383–387. IEEE, 2002.

[4] A Tesei, JA Fawcett, and R Lim. Physics-based detection of man-made elastic objects buried in
high-density-clutter areas of saturated sediments. volume 69, pages 422–437. Elsevier, 2008.

[5] David P Williams. Acoustic-color-based convolutional neural networks for uxo classification
with low-frequency sonar. In John S. Papadakis (Hg.): UACE2019-Conference Proceedings.

3



5th Underwater Acoustics Conference and Exhibition. Hersonissos, volume 30, pages 421–428,
2019.

[6] Andrea Bellettini and Marc A Pinto. Theoretical accuracy of synthetic aperture sonar micronav-
igation using a displaced phase-center antenna. IEEE journal of oceanic engineering, 27(4):
780–789, 2002.

[7] Daniel C Brown, Isaac D Gerg, and Thomas E Blanford. Interpolation kernels for synthetic
aperture sonar along-track motion estimation. IEEE Journal of Oceanic Engineering, 45(4):
1497–1505, 2019.

[8] J Daniel Park, Thomas E Blanford, and Daniel C Brown. Late return focusing algorithm for
circular synthetic aperture sonar data. JASA Express Letters, 1(1):014801, 2021.

[9] Thomas E Blanford, John D McKay, Daniel C Brown, Joonho D Park, and Shawn F Johnson.
Development of an in-air circular synthetic aperture sonar system as an educational tool. In
Proceedings of Meetings on Acoustics 177ASA, volume 36, page 070002. Acoustical Society of
America, 2019.

[10] J Daniel Park, Thomas E Blanford, Daniel C Brown, and Daniel Plotnick. Alternative represen-
tations and object classification of circular synthetic aperture in-air acoustic data. The Journal
of the Acoustical Society of America, 148(4):2661–2661, 2020.

[11] Thomas E Blanford, Joonho D Park, Shawn F Johnson, and Daniel C Brown. Experimental
analysis of the effects of bistatic target scattering on synthetic aperture sonar imagery. In
Proceedings of Meetings on Acoustics 178ASA, volume 39, page 070001. Acoustical Society of
America, 2019.

[12] Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan Sclaroff.
Top-down neural attention by excitation backprop. International Journal of Computer Vision,
126(10):1084–1102, 2018.

[13] Ruth Fong and Andrea Vedaldi. Occlusions for effective data augmentation in image classifica-
tion. In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW),
pages 4158–4166. IEEE, 2019.

[14] David P Williams. On the use of tiny convolutional neural networks for human-expert-level
classification performance in sonar imagery. IEEE journal of oceanic engineering, 46(1):
236–260, 2020.

4


