Tabular Engineering with Automunge

Nicholas J. Teague
Automunge
Altamonte Springs, FL 32714
nteague@automunge.com

Abstract

Automunge is an open source python library that has formalized and automated
the data preparations for tabular learning in between the workflow boundaries
of received “tidy data” (one column per feature and one row per sample) and
returned dataframes suitable for the direct application of machine learning. Under
automation numeric features are normalized, categoric features are binarized, and
missing data is imputed. Data transformations are fit to properties of a training
set for a consistent basis on any partitioned “validation data” or additional “test
data”. When preparing training data, a compact python dictionary is returned
recording steps and parameters of transformation, which may then serve as a key
for preparing additional corresponding data on a consistent basis. In addition to
data preparations under automation, Automunge may also serve as a platform for
tabular engineering, as demonstrated herein.

1 Automunge

Automunge [1] is an open source python library, available now for pip install, built on top of Pandas
[2], SciKit-learn [3], Scipy [4], and Numpy [5]. It takes as input tabular data received in a tidy form
[6], meaning one column per feature and one row per sample, and returns numerically encoded sets
with infill to missing points, thus providing a push-button means to feed raw tabular data directly to
machine learning. The extent of derivations may be minimal, such as numeric normalizations and
categoric binarizations under automation, or may include more elaborate univariate transformations,
including aggregated sets thereof. Generally speaking, the transformations are performed based on a
“fit” to properties of features in a designated training set, and then that same basis may be used to
consistently and efficiently prepare subsequent test data, as may be intended for use in inference or
for additional training data preparation.

The interface is channeled through two master functions, automunge(.) and postmunge(.). The
automunge(.) function receives a training set and if available also a consistently formatted test set,
and returns a collection of dataframes intended for training, validation, and inference — each of these
aggregations further segregated into subsets of features, index, and label sets. A validation set, if
designated by ratio of partitioned data from the training set, is segregated from the training data prior
to transformations and then consistently prepared on the train set basis to avoid data leakage between
training and validation. The function also returns a populated python dictionary, which we call the
postprocess_dict, recording steps and parameters of transformations. This dictionary may then be
passed along with subsequent test data to the postmunge(.) function for consistent preparations on
the train set basis, as for instance may be applied sequentially to streams of data. Because it makes
use of train set properties evaluated during a corresponding automunge(.) call instead of directly
evaluating properties of the test data, preparing data in the postmunge(.) function is very efficient.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

2 Tabular Engineering

Tabular engineering refers to the construction of transformation sets for application to a tabular
feature, which in some cases may include generations and branches of derivations to prepare features
in multiple configurations of varying information content. The platform has an extensive internal
library of pre-defined transformations and transformation sets, each as may be based on properties
derived from training data for a consistent basis toward validation or test data. A user may assemble
custom transformation sets from those defined in the library, and may even define custom functions
for integration into a transformation set using a very simple template [7], which by integrating custom
transforms through the library enables push button support for missing data infill and subsequent
preparations of additional corresponding data on the training set basis.

The specification of transformation sets is supported by two corresponding data structures [8], the
“transformdict” for specifying sets of transformation categories associated with a root transformation
category by way of entries to the Automunge “family tree primitives” [9], and the “processdict” for
defining properties of transformation categories - including the associated transformation functions for
application towards training data / test data / inversion, any default parameters for those transformation
functions, and properties associated with expected inputs and outputs. A defined root transformation
category may then be assigned to a feature, and may also be used to overwrite one of the default root
categories applied under automation.

Under automation, when a feature has not received a manual root category assignment, data properties
of the feature are evaluated to derive a root transformation category for application. In one option,
numeric features may have distribution properties evaluated to select between different types of
distribution conversions. The application of feature property evaluations is modular, such that
customized data property evaluations can be integrated if desired. Alternatively, features without
explicit root category assignments may be returned as a pass-through without transformations, or
without transformations other than missing data infill.

As transformation functions associated with transformation categories are applied, their application
is recorded with the category as a suffix appender to the returned column headers, for example a
z-score normalization by way of the ‘nmbr’ category targeting a feature with header ‘column’ would
be returned with header ‘column_nmbr’. If that transformation set included another downstream
transformation, for example as ‘bsor’ for ordinal encoded standard deviation bins, that output would
be returned as ‘column_nmbr_bsor’. A retention of the intermediate stages in the returned set would
be based on the configuration of family tree primitive entries.

Transformation functions that accept parameters may have selections designated targeting specific
transformation category applications among different features or even among different generations
applied to a common feature. In cases where the same transformation category is applied in different
generations of transformations targeting a common input feature, the applications may be distin-
guished by the column header configuration including suffix appenders associated with input to the
intended application. In order of precedence, parameter assignments may be designated targeting a
transformation category as applied to a specific column header with suffix appenders, a transformation
category as applied to an input column header (which may include multiple instances), all instances
of a specific transformation category, all transformation categories, or may be initialized as default
parameters when defining a transformation category.

An extensive library of transformations includes options like numeric translations [10], bin aggre-
gations, date-time encodings, categoric encodings, and even parsed categoric encodings [11] in
which categoric strings are vectorized based on shared grammatical structure between entries. Noise
injection transforms [10] are available for both numeric and categoric features, as may benefit data
augmentation and differential privacy. Dimensionality reductions may be applied, such as by principle
component analysis [12], feature importance rankings, or categoric consolidations. Categoric con-
solidations refers to aggregating sets of two, more, or all categoric features or labels into a common
categoric feature or label. A consolidation records a single encoding for each activation set, for
example if two features each have unique entries {0,1}, a consolidation could aggregate unique entries
{00, 01, 10, 11} and then encode them. Consolidated categoric labels can be used to train a single
classification model for multiple labels. Inversion can recover the form of input to transformations
and consolidations after an inference. Missing data receives ML infill [13], in which models are
trained for a feature to impute missing entries based on properties of the surrounding features.

3 Demonstrations

The interface is channeled through two master functions, automunge(.) for preparing data and
postmunge(.) for preparing additional corresponding data. As an example, for a training set df_train
which includes a label feature ‘labels’, automunge(.) can be applied under automation as:

'pip install Automunge
from Automunge import *
am = AutoMunge ()

train, train_ID, labels, \
val, val_ID, val_labels, \
test, test_ID, test_labels, \
postprocess_dict = \
am.automunge (df _train,

labels_column = 'labels')

Some of the returned sets may be empty based on parameter selections. Using the returned dictionary
postprocess_dict, corresponding data can then be prepared on a consistent basis with postmunge(.).

test, test_ID, test_labels, \

postreports_dict = \

am.postmunge (postprocess_dict,
df _test)

To engineer a custom set of transformations, one can populate a transformdict and processdict entry
for a new transformation category we’ll call ‘newt’. Here the functionpointer is used to match ‘newt’
to the processdict entries applied for ‘nmbr’, which is for z-score normalization. The transformdict is
used to populate transformation category entries to the family tree primitives [Table 1] associated
with a root category. The first four primitives are for upstream transforms. Since parents is a primitive
with offspring, after applying transforms for the ‘newt’ entry, the downstream primitives from newt’s
family tree will be inspected to apply ‘bsor’ for ordinal encoded standard deviation bins to the output
of the upstream transform. The upstream ‘NArw’ is used to aggregate missing data markers. The
assigncat parameter is used to assign ‘newt’ as a root category to a target input column ‘targetcolumn’.

processdict = {'newt' : {'functionpointer' : 'nmbr'}}

transformdict = {'newt' : {'parents' : ['newt'],
'siblings' : [,
'auntsuncles' . [1,
'cousins' : ['NArw'],
'children' : [,
'niecesnephews' : [],
'coworkers' . [1,
'friends' : ['bsor'l}}

assigncat = {'newt' : ['targetcolumn']}

This transformation set will return columns with headers logging the applied transformation categories
as: ‘column_newt’ (z-score normalization), ‘column_newt_bsor’ (ordinal encoded standard deviation
bins), and ‘column_NArw’ (missing data markers). In an alternate configuration ‘bsor’ could be
entered to an upstream primitive, this is just an example to demonstrate applying generations of
transformations. Since friends is a supplement primitive, the upstream output ‘column_newt’ to
which the ‘bsor’ transform is applied is retained in the returned data. And since cousins and friends
are primitives without offspring, no further generations are inspected after applying their entries.

Options for root categories applied to unspecified features under automation are by the powertransform
parameter, True means numeric features have conditional normalizations based on distribution
properties. ‘excl’ is for direct passthrough, ‘exc2’ for passthrough as numeric, ‘infill” for passthrough
as numeric with ML infill. Defaults as False for normalized numeric and binarized categoric.

powertransform = True

Table 1: Family Tree Primitives

Primitive I;J pstream / Applied.to Column Action Downstr.eam
ownstream Generation Offspring
parents upstream first replace yes
siblings upstream first supplement yes
auntsuncles upstream first replace no
cousins upstream first supplement no
children downstream parents offspring replace yes
niecesnephews downstream siblings offspring supplement yes
coworkers downstream auntsuncles offspring replace no
friends downstream cousins offspring supplement no

Parameters can be passed to the transformations through assignparam, as demonstrated here for
updating a parameter setting so that the number of standard deviation bins for ‘bsor’ as applied to
column ‘column’ is increased from the default of 6 to 7, where since this is an odd number will result
in the center bin straddling the mean.

assignparam = {'bsor' : {'column' : {'bincount' : 7}}}

To consolidate categoric features, specification is by the Binary parameter. Consolidation takes
place after family tree applications and infill, and accepts single column and multiple column integer
encoded target categoric features, such as those encodings returned from the library of transforms.
Target specifications can be via input headers to include all derived categoric sets from that feature,
or via returned column headers with suffix appenders to target specific returned categoric sets.
Demonstrated here is consolidating one set of features to return in a binarized form with retention
of target columns, and one set returned in an ordinal encoded form with replacement. A first entry
encoded in set brackets is used to specify the returned form, or when set bracket specification is
omitted it defaults to returning as binarized with replacement. Consolidations can be specified to
either replace or supplement the associated targets. Label consolidations are specified by the passing
the labels_column parameter as a list of categoric labels with similar set bracket specification.

Binary = [[{'retain'}, 'featurel', 'feature2'],
[{'ordinal'}, 'feature3', 'featured']]

Putting it all together in an automunge(.) call simply means passing our parameter specifications.

train, train_ID, labels, \

val, val_ID, val_labels, \

test, test_ID, test_labels, \

postprocess_dict = \

am.automunge (df _train,
labels_column = 'labels',
processdict = processdict,
transformdict = transformdict,
assigncat = assigncat,
powertransform = powertransform,
assignparam = assignparam,
Binary = Binary)

One can then save the returned postprocess_dict, such as by downloading with the pickle library, to

use as a key for preparing additional corresponding data on a consistent basis with postmunge(.).

4 Intellectual Property Disclaimer

Automunge is released under GNU General Public License v3.0. Full license details available on
GitHub. Contact available via automunge.com. Copyright 2021 - All Rights Reserved. Patent
Pending, including applications 16552857, 17021770

Acknowledgments

A thank you owed to those facilitators behind Stack Overflow, Python, Numpy, Scipy Stats, PyPI,
GitHub, Colaboratory, Anaconda, VSCode, and Jupyter. Special thanks to Scikit-Learn and Pandas.

References

[1] N. Teague. Automunge. https://github. com/Automunge/AutoMunge, 2021.

[2] W. McKinney. Data structures for statistical computing in python. Proceedings of the 9th Python in Science
Conference, pages 51-56, 2010.

[3] F. Pedregosa, G. Pedregosa, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12:2825-2830, 2011.

[4] P. Virtanen, R. Gommers, T. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, S. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. Nelson,
E. Jones, R. Kern, E. Larson, C. Carey, L. Polat, Y. Feng, E. Moore, J. Vand erPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. Quintero, C. Harris, A. Archibald, A. Ribeiro, F. Pedregosa, P. van Mulbregt,
and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261-272, 2020.

[5] S. van der Walt, S. Colbert, and G. Varoquaux. The numpy array: A structure for efficient numerical
computation. Computing in Science & Engineering, 13:22-30, 2011.

[6] H. Wickham. Tidy data. Journal of Statistical Software, 59(10), 2014.

[7] N. Teague. Custom Transformations with Automunge. https://medium.com/automunge/
custom-transformations-with-automunge-ae694c635a7e, 2021.

[8] N. Teague. Data Structure. https://medium.com/automunge/data-structure-59e52f141dde, 2021.

[9] N. Teague. Specification of Derivations with Automunge. |https://medium.com/automunge/
specification-of-derivations-with-automunge-6174ca227184, 2020.

[10] N. Teague. Numeric Encoding Options with Automunge. https://medium.com/automunge/
a-numbers-game-b68ac261c40d, 2020.

[11] N. Teague. Parsed Categoric Encodings with Automunge. https://medium.com/automunge/
string-theory-acbd208eb8ca, 2020.

[12] L. Jolliffe and J. Cadima. Principal component analysis: a review and recent developments. Philos Trans A
Math Phys Eng Sci, 374:2065, 2016.

[13] N. Teague. Missing Data Infill with Automunge. https://medium.com/automunge/
missing-data-infill-with-automunge-ec94d6b13433, 2020.

https://github.com/Automunge/AutoMunge
https://medium.com/automunge/custom-transformations-with-automunge-ae694c635a7e
https://medium.com/automunge/custom-transformations-with-automunge-ae694c635a7e
https://medium.com/automunge/data-structure-59e52f141dd6
https://medium.com/automunge/specification-of-derivations-with-automunge-6174ca227184
https://medium.com/automunge/specification-of-derivations-with-automunge-6174ca227184
https://medium.com/automunge/a-numbers-game-b68ac261c40d
https://medium.com/automunge/a-numbers-game-b68ac261c40d
https://medium.com/automunge/string-theory-acbd208eb8ca
https://medium.com/automunge/string-theory-acbd208eb8ca
https://medium.com/automunge/missing-data-infill-with-automunge-ec94d6b13433
https://medium.com/automunge/missing-data-infill-with-automunge-ec94d6b13433

	Automunge
	Tabular Engineering
	Demonstrations
	Intellectual Property Disclaimer

