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Abstract

Several techniques have been proposed to address the problem of recognizing
activities of daily living from signals. Deep learning techniques applied to inertial
signals have proven to be effective, achieving significant classification accuracy.
Recently, research in human activity recognition (HAR) models has been almost
totally model-centric.
It has been proven that the number of training samples and their quality are crit-
ical for obtaining deep learning models that both perform well independently of
their architecture, and that are more robust to intraclass variability and interclass
similarity. Unfortunately, publicly available datasets do not always contain hight
quality data and a sufficiently large and diverse number of samples (e.g., number
of subjects, type of activity performed, and duration of trials) Furthermore,
datasets are heterogeneous among them and therefore cannot be trivially combined
to obtain a larger set.
The final aim of our work is the definition and implementation of a platform that
integrates datasets of inertial signals in order to make available to the scientific
community large datasets of homogeneous signals, enriched, when possible, with
context information (e.g., characteristics of the subjects and device position). The
main focus of our platform is to emphasise data quality, which is essential for
training efficient models.

1 Introduction

Human Activity Recognition (HAR) aims at automatically classifying activities performed by humans
(including falls) by analyzing signals acquired by sensors [1, 2, 3]. Recent methods and approaches
mostly exploit inertial sensors embedded in smartphones, smartwatches, fitness trackers, and ad-hoc
wearable devices.

In recent years, deep learning techniques have been successfully applied for 1D signals, exploiting
their capability to overcome most of the issues raised by traditional machine learning techniques,
thanks to their properties of local dependency and scale invariance [4]. While deep learning methods
are powerful and achieve high performance, they rely on very complex models that depend on
estimating a large number of parameters, which in turn requires a considerable amount of available
data [5], whose quality increases the performance of the classification process.

Building an effective dataset is a complex task. Several factors undermine its goodness. These
include the naturalness with which users perform the tasks, the position of the device, the balance of
subjects involved, the number of samples recorded, and so on. Even if the dataset design is done in a
rigorous way, there are factors that unfortunately are not controllable: the intraclass variability and
the interclass similarity. The former means that different people perform the same activity in different
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ways, so a bijective association between signal and activity performed does not exist; the latter means
that fundamentally different classes show very similar characteristics in terms of sensor data [3, 6, 7].

In the literature, a number of HAR datasets are available [8, 9, 10]. However these datasets, besides
suffering from the above problems, are heterogeneous with each other. For example, signals are
sometimes expressed in different units of measurement, may have different acquisition frequencies,
and accelerations may include gravity or not. Moreover, ADLs and therefore the labels in the datasets,
do not have a common dictionary or ontology, which leads in having similar labels that actually have
different meanings. Thus, datasets cannot be used together without a significant effort to harmonise
them.

The availability of a dataset containing a large number of samples, also obtained from the integration
of existing datasets, is a well-known issue both in the field of ADLs recognition from inertial
sensors and in other domains, such as that related to image processing [11]. In the context of ADLs
recognition from inertial signals, Bartlett et al. proposed labels aggregation at the semantic level [12].
Labels of six existent datasets, resampled to 200 Hz using linear interpolation, were relabelled
manually to reflect their semantic similarity, obtaining 13 different activity labels. The proposal
however does not seem to consider details such as units of measurement or the presence of gravity
in accelerations. Furthermore, the proposal allows only one configuration at 200 Hz. Recently,
Siirtola et al. proposed a Matlab tool called Open HAR [13] that aggregates labels at a syntactic
level but fails to consider the semantics of the original signals. Obinikpo et al. proposed a system for
big data-d-health integration [14]. They split the integration into different layers: data acquisition,
data processing, analytics, and application. Nevertheless, the proposal is too general concerning the
homogenization of different data sources since its major concern is handling missing values while
integrating databases.

The main contribution of this paper is the definition of a homogenization procedure that allows to
integrate heterogeneous datasets in order to obtain a larger dataset to be used for the definition of
recognition techniques. The procedure has been implemented and integrated in a platform termed
Continuous Learning Platform (CLP) that makes available (i) a large amount of labelled inertial
signals related to ADLs and falls; (ii) a catalogue of downloadable activity recognition models, and
(iii) a service that, given a set of raw data, identifies the corresponding ADL. The platform is available
at the following URL: https://gitlab.com/Pervasive-Healthcare/CLP.

The paper is organised as follows: Section 2 describes the homogenization procedure we identfied;
Section 3 provides an overview of the CLP platform and some implementation details; while Section
4 presents final remarks.

2 Homogenization Procedure

Homogenization involves two different phases: signals homogenization and labels homogenization.

Signals Homogenization. The signals homogenization procedure, as the name suggests, focuses on
signals and handles three types of inconsistencies: differences in sampling frequencies, discrepancies
in units of measurement, and the presence of gravity for acceleration signals. The process involves
three steps:

• Frequency uniformation. A resampling operation takes place intending to modify the
frequency of the time series. There are two different types of resampling: upsampling, when
the sampling rate is increased compared to the original one, and downsampling, when the
sampling rate is decreased compared to the original one. The number of samples obtained
with the new frequency can be calculated starting from Equation 1.

numSamples =
numOriginalSamples ∗ newFreq

originalFreq
(1)

Once the new time series with the desired frequency has been obtained, the respective
timestamp is calculated for each sample starting from 0. Information regarding the original
sampling rate of the dataset is obtained by the metadata if available, or, if this information is
not provided, it is calculated using the timestamp associated with the inertial data. When
the sampling frequency has been obtained or estimated, the data can be resampled. For all
type of sensors, we adopted a frequency of 50Hz. Literature suggests that about 50Hz is a
suitable sampling rate that permits to model human activities [15].
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• Unit of measurement uniformation. The unit of measurement, unlike the sampling frequency,
must always be provided. It is not possible to trace this information from inertial data.
The unit of measurement of a given sensor is converted to the desired one by a specific
formula. For example, to convert an accelerometer from g to m/s2, it is necessary to add
the gravitational acceleration, that is, multiplying by the gravitational acceleration constant,
equal to 9.80665m/s2. For accelerometer, gyroscope, and orientation we adopted m/s2,
rad/s, and microTesla respectively.

• Gravity uniformation. To remove gravity and reduce noise or artefacts, a Butterworth filter
is commonly applied [16, 17]. We considered a fifth-order 0.5 Hz low pass Butterworth filter
with a Nyquist frequency of 25Hz, assuming the gravity force to have only low-frequency
components. Since the information about gravity being included in the signal or not is often
omitted, we decided to apply the Butterworth filter to all raw inertial signals.

Labels Homogenization. The label homogenization procedure aligns the labels of the ADLs in
the dataset to be homogenized with the labels chosen as the reference ones. Because there is no
shared definition for each ADLs and each dataset can have different and conflicting labels, relying
on the syntactic similarity may not be sufficient (e.g., walk and walking describe the same activity
although the two labels are syntactically different, on the other hand, sitting, and sitting down, may be
syntactically similar, but they refer to different actions: being sit and actively sitting from a standing
position). We provide two different approaches to make an accurate mapping:

• Label Syntax Similarity (LSS). This index indicates the syntactic similarity of two strings
(labels) without considering the signal component. We used the Levenshtein distance, which
is the minimum number of elementary modifications (deleting a character, replacing one
character with another, or inserting a character) that allows transforming a string A into
another string B. For example, the Levenshtein distance between walk and walking equals 3.
This distance can be helpful in some cases, but it cannot provide adequate information to
automatically choose the correct mapping.

• Label Signal Similarity Distance (LSSD). Considering the signal component from the time
series, we extracted 21 features from the magnitude component of the signal for each
window. These features describe the different properties of the signal both in the time and
frequency domain. The average of the features extracted from the windows of a specific
activity represents the entire ADL. Each dataset has a feature vector per ADL. The Euclidean
distance is then applied to determine possible associations. If the distance of two activities
is low, it suggests the associated signals are very similar, and the suggestion is a mapping
between the two ADLs.

• Magnitude comparison graph. The procedure also includes a manual comparison of the
magnitude of different labels’ time series for each pair that satisfies the minimum equality
criteria. A random time series is taken for each label to create the graph. This is a visual aid
to help a user in deciding which mappings to perform.

The final decision about mappings is always left to the users. However, LSS and the LSSD are
useful Decision Support Systems that ease the process and reduce the confusion that may arise from
heterogenous labels.

3 Continuous Learning Platform

Continuous Learning Platform (CLP) is a freely available platform that implements the homogeniza-
tion procedure described in Section 2 and provides the tools to both integrate new datasets and to
retrive homogenized datasets and recognition models.

Three main components constitutes CLP: i) Data Collection, that acquires a new dataset; ii) Data
Management that homogenizates the new dataset and insert it in the incrementally built dataset;
and iii) Data Distribution, which enables users and applications to query the platform and obtain
homogeneous sets of labelled signals, but also ad-hoc trained classifiers.

Two more components complete the platform: the Repository Manager that deals with the manage-
ment and internal storage of all the platform data, and a Web Application responsible for making all
the services offered by the platform available through an intuitive graphical interface.
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The individual components were developed in Python, while a message broker (RabbitMQ) has been
used to permit efficient interaction between the components. The Web Application is built using
the Angular framework, while REST APIs have been used for communication. The components are
implemented as a Flask server to manage the REST calls coming from the Web Application. The
platform uses MongoDB as a database.

The rest of the section will give a more detailed view of the three main components.

Data Collection includes the following modules. The Dataset Loader allows users to physically
upload datasets and store them in a local repository.The Driver Loader handles the upload of datasets
drivers, which are scripts provided by the users allowing the platform to correctly interpreter the
data in the dataset. The Importer executes the actual import by running the uploaded driver over the
uploaded dataset, thus standardizing it according to a specific structure shared by all the datasets
imported. It is noteworthy that, at this stage, the content of the datasets are still heterogeneous, while
they share a common structure.

Data Management reifies the homogenization procedure described in Section 2. It includes the
following modules. The Data aligner homogenizes each signal in a dataset at a specific frequency
and unit of measurement, according to a common configuration. It also applies a Butterworth filter to
remove the gravity from accelerations and to reduce noise and other artefacts. The Feature extractor
computes the magnitude and a set of hand-crafted features [18] from inertial signals to determine
signal similarity. Finally, the Label comparator uniforms the dataset’s labels to include a standard
unified set, also considering the signal similarities. This module is semi-automatic: it provides
suggestions on the assignment of labels, but ultimately it is up to the end-user to decide whether or
not to accept the suggestions.

Data Distribution consists of the following modules. The Query builder handles users’ queries for
homogenized data. The Classifier builder trains classifiers according to user queries. Thanks to the
homogenization procedure, the models generalize well in terms of inter and intra-subject variability
regardless of the fact that are trained on data coming from different datasets. The Classifier deployer
distributes trained classifiers according to users’ requests. The Online classifier provides online
services related to classification: given a set of inertial signals, it provides information regarding the
subject’s activity.

4 Conclusions

Human Activity Recognition is a challenging and active research field and has seen rapid growth in
the past few years. The lack of large datasets reduces exploitation of deep learning techniques as they
usually require large amounts of data that exceeds the size of individual datasets.

We propose a platform (CLP) that enables the integration and the distribution of data coming from
heterogeneous sources. The main components of CLP have been fully implemented and are available
at https://gitlab.com/Pervasive-Healthcare/CLP, while some aspects, such as the Web
application is still under active development.

Eight datasets available in the literature have been already integrated and used to train a convolutional
neural network and a recurrent neural network. These preliminary tests confirm the improvement of
performances by combining existing datasets from different smartphones and various contexts and
will be the focus of future work.

Future directions include polishing the Web application and an intensive test of the overall platform
with real-world applications. Relying on our previous work on personalization [19], we are currently
working on designing a software component that interfaces the CLP platform and an Android
application to develop personalized models.
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