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Abstract

It is commonly acknowledged that the availability of the huge amount of (training)
data is one of the most important factors for many recent advances in Artificial
Intelligence (AI). However, datasets are often designed for specific tasks in narrow
AI sub areas and there is no unified way to manage and access them. This not
only creates unnecessary overheads when training or deploying Machine Learning
models but also limits the understanding of the data, which is very important for
data-centric AI. In this paper, we present our vision about a unified framework
for different datasets so that they can be integrated and queried easily, e.g., using
standard query languages. We demonstrate this in our ongoing work to create a
framework for datasets in Computer Vision and show its advantages in different
scenarios. Our demonstration is available at https://vision.semkg.org.

1 Vision

Motivation The field of Artificial Intelligence (AI) advanced significantly in recent years and most
of the breakthroughs are data-intensive AI or its combinations with other techniques. Therefore, it
is reasonable to argue that to make AI better, we need to have better ways to create (training) data
and make it available to be consumed by AI models. In different AI areas, e.g., Computer Vision
(CV) and Natural Language Processing (NLP) etc., and even within the same area, datasets are
organised differently, e.g. stored in different formats and using different labels. This hinders not
only the advancements in individual AI area but also the path towards Artificial General Intelligence
(AGI). Let us make an analogy with the developments of human intelligence (HI) to demonstrate the
importance of sharing data and knowledge. To advance in sciences and technologies, over thousands
of years, we have accessed all kinds of knowledge and data, and this is because we have (written)
languages. Based on previous discoveries, new ones were discovered and recorded in shareable
forms. Similarly, it is commonly acknowledged that the current modern AI era was triggered by the
availability of huge amount of data. For example, ImageNet [5] helps to showcase the success of
Deep Learning in CV, many datasets created from Wikipedia and other websites provide input for
NLP models; although language models like GPT [31] or BERT [6] do not need labelled data, it
is still required in many downstream tasks. These datasets are so fragmented that even there exist
algorithms/architectures for AGI models, there is no data to train them. This calls for the need of a
unified framework to share and access datasets.

General Ideas We propose a unified framework for datasets in data-centric AI. Within this frame-
work, not only different datasets in one AI area but also those in different AI areas are integrated
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and linked together. Existing resources such as ConceptNet [35], Wikidata [39], have a similar
goal in a sense that they integrate data from different sources and make them shareable, but they
rather focus on some specific application domains, and particularly, none of them is connected with
datasets in other areas such as CV. On the other hand, in CV areas, so-called scene graphs were
introduced to model the relationship between detected objects in images [12]. However, they lack
the cross-domain interoperability and cannot be queried via standard query languages. Therefore,
we argue that these existing resources should be unified and new-coming resources should easily
be integrated. We believe that it is very beneficial, for example, it can help to avoid distribution
shift2, create more robust models for training and testing [14]. Also, the shift from model tweaking
to deep understanding of data furthermore requires that datasets need to be better organised [33].
Additionally, we believe that the term “data” should be extended to contain not only training data but
also abstract knowledge, e.g., commonsense or causal relations [34].

In the next sections, we present our ongoing work to demonstrate a unified framework for datasets in
CV in which images annotations are described in a knowledge graph (KG) and labels are linked to
the well-known knowledge base Wikidata so that we can interlink the annotation labels across label
spaces in different datasets under shared semantics. We then describe our future work and concrete
steps to realise our vision.

2 A Case Study of Vision Knowledge Graph

The Vision Knowledge Graph To realise the ideas outlined above, we started to build a unified
knowledge graph, namely VisionKG [18], for CV datasets (e.g, COCO [20], KITTI [8] or Visual
Genome [15]). VisionKG is a Resource Description Framework (RDF) based knowledge graph [10]
that contains RDF statements [26] describing the metadata of the images and the semantic of
their annotations. RDF is a standardised data model recommended by the W3C particularly for
semantic data integration and as a formal representation for shared human-machine understanding.
Therefore, RDF can be used to represent many semantic structures of popular label taxonomies
such as Wordnet [7], ConceptNet [35], and Freebase [3] which are used in many CV datasets, e.g.,
Imagenet [16], OpenImage [17] and VisualGenome [15].

Figure 1 illustrates the process of creating VisionKG. We first collect CV datasets and extract
their annotation labels 1©. To create a unified data model for the annotation labels and visual
features, we follow the Linked Data principles [2] and use the RDF data model. The data en-
tities (e.g, images, boxes, labels) are named using Uniform Resource Identifiers (URI). RDF
data model allows the data to be expressed using triples of the form 〈subject , predicate, object〉.
For example, to describe “an image contains a bounding box for a person" in COCO dataset,
we first assign unique URIs, e.g., vision.semkg.org/img01 and vision.semkg.org/box01, for the
image and the bounding box, respectively to create the following triples for such image:
〈img01 , hasBox , box01 〉, 〈box01 , hasObject , obj01 〉, 〈obj01 , rdf : type,Person〉. The predicates
hasBox, hasObject, and rdf:type are predefined, in which rdf:type is used to express an object/image
belongs to a specific class/type, e.g., Person, in the knowledge base; for simplicity, we skip the prefix
in these triples. Furthermore, we add metadata and semantic annotations for the images, e.g., where
the images come from or what are the relations of the boxes in an images (Figure 1 2©). The earlier
provides the semantic relationships to facilitate semantic reasoning capability in below.

Unifying and Expanding Labels Since labels, attributes, and relationships in COCO, KITTI,
and Visual Genome datasets are either just text or mapped to WordNet [7], we link them to the
corresponding predicates and classes in Wikidata.3 Wikidata is an open knowledge graph commonly
used in other application domains, and therefore integrating datasets via Wikidata make them available
also to other domains. Another advantage is that we can utilise the existing class hierarchy as shown
in Figure 2 to add more labels to existing datasets using a semantic reasoner to expand/materialise the
labels. For example, a box that is labelled as a pedestrian is also annotated as a person (Figure 2 1©)
because in the hierarchy of the knowledge base, pedestrian is a subclass of person (Figure 2 2©).
Hence, our knowledge graph can interlink the annotation labels across label spaces under shared
semantic understanding. Along with the semantic relationships, thanks to the URI representation
of image instances, different types of annotations for different learning tasks can be linked together

2http://ai.stanford.edu/blog/wilds/
3https://www.wikidata.org/
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Figure 1: The overview of VisionKG

via the URI of the images. For example, COCO [20], COCO-Stuff [4], and VisualGenome [15]
share many common images for different annotations in object detection, semantic segmentation, and
visual relationship detection.

Figure 2: Mapping labels in COCO, KITTI, and Visual Genome to classes in the knowledge base (1).
Expanding the labels according to the class hierarchy (2). And examples of two equivalent queries to
obtain images that contain Person from COCO, KITTI, and Visual Genome datasets (3,4).

Use Cases VisionKG enables a more effective way to organise training data and offers more robust
ways to analyse and evaluate trained Deep Neural Networks (DNNs). Specifically, datasets and
analysis can be done using rich semantic query languages such as SPARQL.4 The SPARQL query
language provides users the ability to describe queries using RDF statements which are similar to
those in the SQL language. The first use case is that VisionKG can be used to obtained mixed-datasets
in an elegant way. For instance, one can query for images of person from COCO, KITTI, and Visual
Genome using a simple query (Figure 2 4©) instead of the more complex query (Figure 2 3©) that
covers all possible cases: pedestrian in KITTI or man in Visual Genome. This is possible because we
already aligned labels of existing datasets with the common taxonomy and expanded them according
to the taxonomy hierarchy. Similarly, one can conveniently create mixed-test data. In advanced
settings, users can have more fine-grained criteria for retrieving images such as the query for "images
that contain a person holding a cat" shown in Figure 1 a©. Other use cases include analytic queries
to have deeper understanding about the dataset and performances of DNNs on some particular sub-set
of the data. Figure 1 b© illustrates a complex query to "search for the trained models to detect Car on

4https://www.w3.org/TR/rdf-sparql-query/
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images of Car in crowded traffic scenes or in mountain areas". More example SPARQL queries can
be found in our online VisionKG system.5

3 Towards a Unified Framework for Querying Data on The Fly

Our case study shows how the data can be organised in a unified way for both training and test
phases. This approach advocates for an AI strategy that shifts from emphasis on proprietary datasets,
to the sharing of data across entities for knowledge creation, namely building a knowledge graph
guiding learning algorithms, called Learning Knowledge Graph LKG. Such a strategy leads us
to look towards building a unified framework to facilitate the ability to query data in a declarative
fashion for data loading, training, validation and test phases of Machine Learning pipelines. These
pipelines are not restricted to neural networks but also learning approaches such as probabilistic
logic programming [25] or a fusion of various learning algorithms, e.g. [29]. Such a framework
with LKGwill enable a learning algorithm to dynamically retrieve data programmatically. Hence,
it does not have to assume training/validation/test sets to be fixed. This might lead to more robust
models for a set of learning architectures. In particular, LKGcan give such a training algorithm the
access to a much bigger set of training samples than those in a traditional training pipeline. For
example, we are planning to integrate into LKGa larger set of classification samples than those in
the currently popular datasets such as 14 millions images of ImageNet [5] or even 300 millions
images of JFT-300M [37] with probably open label spaces, e.g. [42, 14, 11]. Note that LKGwill also
consider unsupervised, self-supervised and weakly-supervising learning algorithms, hence, bigger
sets of images such as Youtube-8M [1], YFCC100M [38] and LAION-400-MILLION 6 are also to
be integrated. In this light, it will be much more challenging to build a learning architecture as it has
to deal with ever-growing training/validation/test sets.

Towards this vision, instead of focusing on learning architectures, i.e., writing new models instead
of understanding the nature of the learning tasks and its semantic relationships to the potential data
being learnt, we focus on how to represent semantic relations, "know-how", context and domain
knowledge, then make them queryable so that the training algorithms can exploit such a human-
machine understandable knowledge to build the desired models by just specifying the expected
outputs in a declarative fashion. For instance, to build a model for scene understanding, LKG can
specify how an image scene can be represented as a scene graph constructing from edges (e.g., RDF
statements) representing relationships among objects which can be learnt via the models to detect
visual relationships, e.g [22], called VRD models. A training algorithm to build such VRD models
will have to rely on datasets such as Visual Genome [15] or VrR-VG[19] which have various semantic
relationships with datasets for training object detection/segmentation and classifications such as
COCO and ImageNet. Interestingly, VisionKG [18] illustrated that such relationships can also be
connected to natural language data sources such as Wordnet [27] and Conceptnet [35], Wikidata [39],
and Freebase [3]. Along the same line, various datasets can help to facilitate knowledge embedding
associated with natural language ones such as CLIP [30], VisualComet [28] and VCR [41]. On the
other hand, there are many text-based datasets that can be enriched with visual data such as [36], [9]
and [21]. To this end, the next challenge for our framework is how to leverage such rich correlated
information among datasets and learning tasks to automate the training algorithms to make it faster,
more efficient and more robust in building AI component powered by LKG.

Our such knowledge-centric approach hints that companies and organizations should focus on
preparing knowledge-driven AI development pipeline. This shift shapes organizations’ HR strategy
on how to build an AI team that embrace the potential capabilities of LKG. While some companies
will still require hiring large cohorts of rare and expensive data engineers and scientists, knowledge
engineers can offer alternative resources to scale up AI development pipelines. The joint force among
them can leverage the knowledge discovery in such pipelines to automate various phases of the
development. For instance, the work such as Taskonomy [40] and Taskology [23] can facilitate the
processes of building taxonomies/ontologies of the learning tasks so that the relationships among them
can be exploited to build more efficient multi-task learning pipelines. Moreover, our knowledge-driven
approach will lean towards a similar automation approach of the Software 2.0 [32], DynaBench [13],
DynaBoard [24] whereby the knowledge engineers and domain experts can specify application
specifications, tests and benchmarks along with domain knowledge as the input to automate the AI

5https://vision.semkg.org
6https://laion.ai/laion-400-open-dataset/
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development phases, such as data cleaning, data integration, label creation and model search, model
selection and model testing.
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